Culture of choroid plexus epithelial cells and in vitro model of blood-CSF barrier.
نویسندگان
چکیده
Chemical homeostasis in the extracellular fluid of the central nervous system (CNS) is maintained by two brain barrier systems, i.e., the blood-brain barrier (BBB) that separates the blood circulation from brain interstitial fluid and the blood-cerebrospinal fluid barrier (BCB) that separates the blood from the cerebrospinal fluid (CSF). The choroid plexus, where the BCB is located, is a polarized tissue, with the basolateral side of the choroidal epithelium facing the blood and the apical microvilli in direct contact with the CSF. The tissue plays a wide range of roles in brain development, aging, nutrient transport, endocrine regulation, and pathogenesis of certain neurodegenerative disorders. This chapter describes two in vitro cultures that have been well established to allow for study of the BCB structure and function. The primary choroidal epithelial cell culture can be established from rat choroid plexus tissue, and a similar immortalized murine choroidal epithelial cell culture known as Z310 cells has also been established. Both cultures display a dominant polygonal morphology, and immunochemical studies demonstrate the presence of transthyretin, a thyroxine transport protein known to be exclusively produced by the choroidal epithelia in the CNS. These cultures have been adapted for use on freely permeable Transwell(®) membranes sandwiched between two culture chambers, facilitating transport studies of various compounds across this barrier in vitro. These choroidal epithelia cultures with the Transwell system will perceivably assist blood-CSF barrier research.
منابع مشابه
بررسی کیفی و کمی بیان پروتئین آکواپورین1 در شبکه کوروئید رت نژاد سویتار
Abstract Background: Choroid plexus (CP) is a branched structure made up of a single layer of epithelial cells and blood capillaries, forming the blood-CSF-barrier. The CSF (cerebrospinal fluid) is mainly produced from the CP. Aquaporin1 (AQP1), water channels that are highly expressed on the apical side of the membrane in choroid plexus, have a major role in mediating water transport across th...
متن کاملLead exposure promotes translocation of protein kinase C activities in rat choroid plexus in vitro, but not in vivo.
Lead (Pb) exposure reportedly modulates PKC activity in brain endothelial preparations, which may underlie Pb-induced damage at the blood-brain barrier. Our previous work indicates that Pb accumulates in the choroid plexus and causes dysfunction of this blood-cerebrospinal fluid (CSF) barrier. The present studies were undertaken to test the hypothesis that Pb in the choroid plexus may alter PKC...
متن کاملDemonstration of a coupled metabolism-efflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics.
Brain homeostasis depends on the composition of both brain interstitial fluid and CSF. Whereas the former is largely controlled by the blood-brain barrier, the latter is regulated by a highly specialized blood-CSF interface, the choroid plexus epithelium, which acts either by controlling the influx of blood-borne compounds, or by clearing deleterious molecules and metabolites from CSF. To inves...
متن کاملInhibition by lead of production and secretion of transthyretin in the choroid plexus: its relation to thyroxine transport at blood-CSF barrier.
Long-term, low-dose Pb exposure in rats is associated with a significant decrease in transthyretin (TTR) concentrations in the CSF. Since CSF TTR, a primary carrier of thyroxine in brain, is produced and secreted by the choroid plexus, in vitro studies were conducted to test whether Pb exposure interferes with TTR production and/or secretion by the choroid plexus, leading to an impaired thyroxi...
متن کاملبررسی اثر کورکومین بر سطح پروتئین های AQP1 در سلول های اپیتلیالی شبکه کوروئیدی بطنهای جانبی رت نژاد ویستار
Background : Aquaporin1 (AQP1) protoin channels that expressed in the Choroid plexuses of brain ventricles, have an important role in cerebrospinal fluid (CSF) production. Some pathophysiological conditions such as intracranial hypertension, systemic hyponatremia and hydrocephalus followed by overproduction of CSF. Studies indicated that Curcumin can inhibit ionic channels. So the aim of this s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Methods in molecular biology
دوره 945 شماره
صفحات -
تاریخ انتشار 2013